SYNTHESIS OF SESQUITERPENOIDS RELATED TO NOOTKATONE--STRUCTURE DETERMINATION BY NMR USING TRIS(DIPIVALOMETHANATO)EUROPIUM

T. J. Leitereg*

Western Regional Research Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Berkeley, California 94710

(Received in USA 17 May 1972; received in UK for publication 22 May 1972)

The total synthesis of racemic nootkatone $(\underline{1})$, a sesquiterpenoid whose (+)-antipode is found in grapefruit¹, has been reported independently by Schudel² and Marshall³. The following describes a synthesis leading to a series of compounds related to $\underline{1}$.

(+)-Dihydrocarvone⁴ (2) was prepared from (-)-carvone by reduction⁵ or from (+)-limonene by oxidation⁶. The anion of (+)-2 (method of McQuillin⁷) was condensed with <u>trans</u>-3-penten-2-one. Dehydration with potassium <u>tert</u>-butoxide in DMSO afforded a mixture of enones and starting material.

Unchanged (+)- $\frac{2}{2}$ (47% by weight) was removed by distillation and a mixture of products was obtained, bp 85-115° (3µHg); spectral data indicated that these products were isomers having the general structure drawn above.

^{*} National Research Council Postdoctoral Research Associate, 1969-71.

The major component (61% by glc) was separated by preparative glc, and structure $\underline{3}$ was assigned from spectroscopic properties. The IR spectrum of $\underline{3}$ exhibits bands at 1670 cm⁻¹ (shoulder at 1680 cm⁻¹, >C=O) and 895 cm⁻¹ (>C=CH₂); the molecular weight is 218 (obtained from mass spectrometry). The nmr spectrum (100 MHz) in CCl₄ of $\underline{3}$ shows a doublet at 0.96-0.89 ppm (3H), a singlet at 1.09 (3H), a singlet (slightly split) at 1.69 (3H), a doublet at 4.83-4.75 (2H), and a singlet (slightly split) at 5.68 (1H).

Figure 1 illustrates the nmr spectrum of <u>1</u>, whose absolute configuration is known^{1,8}, in CCl₄ with tris(dipivalomethanato)europium⁹ [Eu(DPM)₃] present as a shift reagent. The nmr spectrum of <u>3</u> under the same conditions is shown in Figure 2. The splitting pattern for H₁, H₂, and H₃ in both are superimposable; the gem J_{1,2} = 17 cps, the transdiaxial J_{2,3} = 14, and the equatorial-axial J_{1,3} = 5. Therefore, the vicinal methyls in <u>3</u> must be <u>cis</u> as in <u>1</u>. In addition, H₇ must be equatorial since the twelve line pattern for H₅ and H₆ (assigned on the basis of decoupling experiments) does not show any transdiaxial coupling between H₆ and H₇ (J_{5,6} = 14; J_{5,7} = 2; J_{6,7} = 2; and J_{4,5} = 6). Thus, the isopropenyl group is axial. The use of Eu(DPM)₃ as a shift reagent provides a simple, convenient, and rapid method of determining the structure of a complex molecule.

Hydrogenation of $\underline{3}$ in acetic acid with Pd-C (conditions which are known to isomerize axial isopropenyl substituents to the equatorial position¹⁰) gave a different product than the hydrogenation of $\underline{3}$ in ethanol with Pt-C (conditions which do not bring about isomerization). This chemical evidence supports the conclusion that the isopropenyl group is indeed axial.

A further investigation of this reaction and the structures of the other isomeric products is underway.

<u>Acknowledgment</u>. The author expresses his gratitude to Dr. R. Lundin of this laboratory for the nmr and decoupling experiments.

REFERENCES AND NOTES

1. W. D. Macleod and N. Buiges, J. Food Sci. 29, 565 (1964).

.

- 2. M. Pesaro, G. Boxatto, and P. Schudel, J. Chem. Soc. (D), 1152 (1968).
- 3. J. A. Marshall and R. A. Ruden, Tetrahedron Letters No. 15, 1239 (1970).
- Absolute configuration established; Hückel, <u>J. prakt. Chem</u>. 157, 225 (1941); <u>FIAT Review</u> of Theor. Org. Chem., Pt. 1, 1939 (1948); and Birch, Ann. Reports 47, 191 (1959).
- 5. T. G. Holsall, D. W. Theobald, and K. B. Walshaw, J. Chem. Soc., 1029 (1964).
- 6. (+)-Limonene was converted to the epoxide which gave $(+)-\underline{2}$ on treatment with boron trifluoride-etherate in DMSO.
- 7. R. Howe and F. J. McQuillin, J. Chem. Soc., 2423 (1955).
- 8. Mirror image of (+)-nootkatone is drawn here for comparison with 3.
- 9. J. K. M. Sanders and D. H. Williams, <u>J. Amer. Chem. Soc</u>. 93, 641 (1971) and references therein.
- 10. G. L. Chetty, V. B. Zalkow, and L. H. Zalkow, Tetrahedron Letters No. 28, 3223 (1968).

Figure 1. NMR spectrum (100 MHz) of nootkatone (<u>1</u>) in CCl_4 with TMS and $Eu(DPM)_3$ present. The ratio of moles of substrate to moles of $Eu(DPM)_3$ was 3 to 1.

Figure 2. NMR spectrum (100 MHz) of $\underline{3}$ in CCl₄ with TMS and Eu(DPM)₃ present. The ratio of moles of $\underline{3}$ to moles of Eu(DPM)₃ was 3 to 1.